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SECTION 1

SUMMARY

This report gives the second Phase (Phase B) results ob-
tained on NAS 8-11715 contract, in the area of single
parameter testing. The main objective of the study is to
put into operation better ways of testing components during
stage checkout. The expected gains include a reduction in
component checkout time and improved component perrformance

evaluation during checkout.

The result of the study through Phase B is positive. We
can test linear active and passive systems that exhibit
first and second order transTfer functions. The savings
include reduced checkout time, possible isolation of
failures, and the ability to test with small signal ampli-

tudes.

Many technical areas have been investigated with two tech-
niques showing direct applicability to the solution of

single parameter testing of linear systems.

These techniques are:

1. The growing exponential technique which utilizes a
specified increasing exponential function as a probing sig-
nal.

2. A sampling technique developed from the study in opti-

1.



mization techniques.

The first technique involving growing exponential signals
nas been tested experimentially on the analog computer.

The results for testing systems exhibiting first and second
order transier rfunctions is positive, in that parameter
variations can be measured. The main disadvantage with
this technigque is the requirement that a nominal system is
used to null against the actual system. As yet, limitations
have not been encountered experimentally or mathematically

in applying the method.

The second technique involving sampling has been considered
mathematically. The experimental results from the growing
exponential technique can be extrapolated to this sampling
method to demonstrate its application in single parameter
testing. The paramount gain is the reduction in the amount

of hardware required for implementation.

What problems require further investigation? The growing
exponential technique must be evaluated in a real system
application and useful comparisons acquired to evaluate its

practical competitive position.

The sampling technique must be evaluated in comparison to

the growing exponential technigue in a real system applica-

tion.




SECTION 2

INTRODUCT ION

The single parameter testing program was established to perform
mathematical analysis on typical systems of varying complexity.
The program will verify the applicability of single parameter

testing to launch vehicle system checkout.

The general technical approach of the study was limited to systems
or devices for which continuous transfer functions can be written
and restricted to their linear regions. Primary emphasis was dir-
ected on the identification of changes in the terms which compose

the transfer function.,

The approach used was to:

1. Describe transfer functions and study the changes in
behavior with incremental changes in its parameter,
i.e., terms.

2. For each transfer function, investigate the measur-
ability of performance degradation due to changes in
the transfer function. One output of this task will
be determining the feasibility of GO, NO-GO, decisions
based on parameter testing.

3. Investigate possible theories of measuring single para-
meters to accomplish the measurement of incremental
changes, and performance degradation due to transfer

function changes.




The study is divided into three specific tasks:
Phase A: Simple first, second, and third order linear
passive networks whose transfer functions resemble those
of useful systems, were to be selected for detailed in-

vestigation. The results will be used to extend the test-

ing to higher order systems,

Phase B: The investigation and selection of criteria
described in Phase A. This is to include the linear

active networks.,

Phase C: With the guidance and approval of the NASA
technical representative, an actual subsystem will be
chosen for analysis. The transfer function will be de-
rived, and the techniques developed in Phase A and B are

to be applied to the subsystem.




SECTION 3

ACTIVE NETWORKS

3.1 REVIEW OF GROWING EXPONENTIAL TESTING

The first pnase report (64 SIMAR 59/2) of this study, in the
area of Single Parameter Testing, gave a comprehensive descrip-
tion of a testing scheme applying growing exponential signals.
In order to bring the basic concept into focus a quick review
is in order. The basic scheme consists of a specialized sig-
nal generator, the transfer function of interest, a nominal
eguivalent transfer function, a specialized set of filters,
and a linear estimator. The overall idea is to generate a
set of signals matched to a transfer function that represents
a particular part of a system transfer function. This par-
ticular part is the first partial derivative oI the system
transfer function with respect to a parameter. Considered

in strict mathematical terms, it is the Iirst term in a

Taylor Series Expansion of the system function wnen the in-

dependent variable is the parameter.

The discussion thus far is the heart of the agument of testing
with growing exponential signals. Conceptionally, this par-
ticular matching of a partial derivative may be considered
similar to a simple multiplication of an ordinary complex
number by its conjugate. In both cases the invariant pro-

perty of the squared function or quadratic offers mathemati-
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cal simplicity. This is a difrficult concept to grasp by a
detailed mathematical description, therefore, as an example,
change the specialized signal generator into a coordinate
generator. Each particular component out of the signal gen-
erator represents a coordinate vector and the composite
signal an entire coordinate system. Each coordinate is con-
structed to represent a change in a particular parameter,

so each may be considered a vector proportional to a unit
parameter change. With this description, clearly the gen-
erated coordinate system is related to the first partial

derivatives as mentioned,

Now for a moment, consider a system transfer function with
relation to future time. If the question of prediction is
considered, clearly no ordinary system can predict what
state it will exist in at some specified time without carerul
evaluation of a forcing function up to that particular time.
If a signal from a sinusodial generator is known to be gen-
erated at a specific time, clearly, prediction only requires
a knowledge of the signal amplitude now and the specific
interval of time. This concept should clear up any doubt
now in regards to the term matching. If the specialized
generator is considered as the signal, all that is required
is the initial amplitude and the time interval to allow pre-
diction. Hence, if the coordinate system mentioned above

is used by equivalently reversing the time parameter, the

concept of matching has been completed.



In an overall view, the matched signal coordinate system looks
exactly like an impulse response of the partial derivative
system reversed in time. By using this as an input signal
to the system transfier function an output signal will result
with amplitudes assigned to each member of the coordinate
system. With no parameter change, theoretically all values
out of the total system would be zero except for the effect
of Ho(s) on each coordinate. That is, the Taylor Series ex-
pansion allows the system to be equivalent represented by
Ho(s) and partial derivative systems in parallel. Hence,
each partial derivative system will attentuate the coordi-~
nates to zero and all that would be retained is a trans-
formed input signal coordinate system. That is Ho(s) 8(s), -

where ¢(s) is the input signal coordinate system.

Now the remaining parts of the scheme may be incorporated
into the picture. If an equivalent nominal system transfer
Tunction is included in parallel and the same input signal
is applied, a dirference will allow removal of the undesired
transformed input. Consequently, with no parameter change

a null or zero output will exist. The filters can be added
to the scheme in a serial fashion. That is, filter one

will extract Ql and all the rest of the coordinates, filter
two will extract ¢2 and all higher coordinates, but not @l
which will be attenuated. This process can be used to extract
signals up to @n in a serial Tfashion. The filter outputs can

then be scaled in a proper fashion by an estimator based

7.




on a linear regression relation and the output sampled at
the time a value is known (t = tl)' The result can be an
estimate of how much a parameter changed at some particular
instant of time if the mathematics is properly carried
through. If the sampling instant is conveniently chosen at
(t = 0) and all scale factors properly carried through the
mathematics, the result will be a linear function of the

changing parameter.

A detailed mathematical discussion of this growing exponen-
tial scneme is contained in the first phase report of this
study, and the interested reader should refer all detailed

question to the detailed mathematics.

One term that has not been clearly stated is growing ex-
ponential signals. The term clearly comes from the form

of the specialized generator output and is tied into the
fact that linear system impulse response functions are nor-
mally decaying exponential functions. Consequently, partial
derivative system functions will also be decaying exponen-
tial functions, and the matching coordinate system will
consist of the exponentials with time reversed. Hence, the
matching signal generator puts out growing exponential sig-

nals.




3.2 ACTIVE NETWORKS INVESTIGATED

The technique normally applied to analyzing an active network
consists of picking a region of operation and an appropriate
model that describes the operation over a specific dynamic
range. The model then depends on the physical processes and

the ultimate answers that are desired from the model. Since

an accurate functional model can abstract the internal operation
of the physical process only over a dynamic range, limits must
be specified for the validity of the parameters in the function-

al model.

Now the concept of a small signal model can be clearly stated.
The dynamic range is a small signal specified in terms of in-
put-terminal signal condition, and the model parameters are
the network parameters., This in turn allows the discussion of
a linear active network model without describing the complex
physical process. Thus, it allows the non-linearities in the
physical process to be considered outside of the dynamic range
and detailed questions regarding these non-linearities must be

referred to another model.

Within this framework of a limited dynamic range for a partic-
ular model, all of the concepts of linear system analysis can
be applied. That is, linear differential equaﬁions and corre-
sponding Laplace and Fourier transforms can be used to evaluate

the state of the model. At this point, questions regarding the

existence of a transform, stability properties, system bandwidth,



available output power and measureability can be considered.
In order to limit the scope of the general system problem

a specific interpretation must be considered.

The interpretation of an Active System used in this study is
in reference to a device that exhibits a unilateral transfer
characteristic. A simple amplifier is the most common example
exhibiting this unilateral characteristic. Consequently, an
amplifier circuit will be evaluated in terms of the proposed

method of single parameter testing.

A number of amplifier circuits will be considered. One ampli-
fier circuit to be investigated is shown schematically in Fig-

ure 3-1 along with the appropriate equivalent circuit or small

signal model,.

The transfer function relating input to output is derived in

Section 3.2.1 as

o _ SRy

e,

in (Rg + Ri) [(1 + rp/RL + rp/Ro) S + RL + r ]

C RORL
or in standard form
o _ Ks__
€in dls + d0
rp = Tube dynamic plate resistance
M = Tube amplification ratio
10.



FIGURE 3-1
TRIODE AMPLIFIER AND EQUIVALENT CIRCUIT




where
R. 1
K - X
(Rg + Ri)
dl = 1 + rp/RL + rp/R0
do = (RL + rp)/C RORL

Clearly this amplifier falls into the general category investi-
gated under the definition of first order transfer functions,
The fact that "rp" is included in both "dl" and "do" complicates
the testing required to interrogate the plate resistance. How-
ever, "u" the tube amplification ratio is a linear function in
the gain and clearly fits into the parameters already measured.
Another note worthy fact in this transfer function is egual

order of "S" in both numerator and denominator.

A ma jor assumption in the amplifier transfer function concerns
the validity of the model for the tube operation., Consequently,
testing signals must be used that satisfy the dynamic range of
the model in order to legitimately test the particular transfer
function. Let's proceed by obtaining a transfer characteristic
for a pentode amplifier as shown in Figure 3-2, The appropriate
small signal equivalent circuit in Figure 3-2 is somewhat non-
conventional, but for comparison it is desirable to obtain a
relation similar to a triode with tube amplification and plate

resistance as parameters.

12.



FIGURE 3-2

PENTODE AMPLIFIER AND EQUIVALENT CIRCUIT

13.



The transfer function for the pentode amplifier is derived in

Section 3.2.1 as

2
e, _ vl Ri Cl (1 + Rk ck sS)s
e,
in 2 3 2
(d5 s° + d4 S + 1) (d3 s + d2 s© + dl S + do)
where
1 Rk + r
a, = (1+—_ERL )
CORO
r + r + R R, C r
a = 1.2 TR, X% (g, Ip
1 R R RoCo Ry
0 L
C r r
= _3 P _P
d2 rp Cy + R, Cp (Ck + 1 + R, + RL)
d3 = Rk Ck rp C3
d4 = Rg Cl + Ri Cl + R C2
d5 = Ri Rg Cl 02

It is interesting to see that plate resistance is contained in
every coefficient of the cubic., However, tube transconductance
(Gm = u/rp) is normally given for a pentode and the possibility
exists of examining the active tube parameter as a gain co-
efficient in this transfer function. Also note that the order
of the denominator is high, and it might be difficult to measure
each of the circuit parameters because of the laborious calcu-
lating required. One other factor involved in this model is .
signal dynamics, which again just remain within the bounds of

the model.

14.




Next, let's examine a transistor amplifier in a similar fashion
to the tube circuits in order to allow some comparison of active
parameter measurement requirements for transistors. A simple
audio amplifier circuit is shown in Figure 5 along with the
equivalent circuit in Figure 6. The by-pass around the emitter
bias resistor is assumed perfect in order to simplify the al-

gebra.

The transfer function for this transistor amplifier is derived

in Section 3.2.1 as

eo - K 82
®in (d. s + 1) (4. s> +d, s + d.)
3 2 1 0
where
R. C.a
< Ry, Ry € %o
re
Rt Ry 1-a5 31
dg =) ¢t —F—) =
BB 1 1 e 1
C R + R, l -a
a = &=+ (g PRyt IRy + 1
1 BB i e
a, = ¢, R
d3 = (RL + Ro) c0

The active device parameters appear in the gain and two co-

efficients of the quadratic denominator term. Consequently,

15.




similar measurements to those required for the pentode amplifier
can be applied to this transistor amplifier. In spite of the
circuit loading due to the transistor, the transfer character-

istic comes out rather simple in terms of the active parameters.

The governing assumption for the development of all three trans-
fer functions is certainly the model validity and the ability
to keep signals within model restrictions, A common property
clearly contained in all three characteristics is the active
parameter in the gain coefficient. In the pentode amplifier

and the transistor audio amplifier the third order denominator
term and the second order term can be compared if the cubic was
factored into a quadratic and first order term., Then both would
exhibit second order denominator terms with the active element

clearly contained in coefficients,

The relative importance of coefficients in the denominator of
a second order transfer function are equivalent to the importance
of parameters in an active device. Consequently, a thorough
evaluation in any experimental sense of variations in denomi-

nator coefficients of a second order system, is required.

Normally, the transistion from one model of an active network

to another model is based on properties of the active parameters.
For example, a tube equivalent circuit is modified when either
dynamic plate resistance or tube gain vary appreciably over the
dynamic range of interest. 1In the mathematical model some of

the parameter variations can be included with a non-linear or

16.
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non-constant function representing the parameter, In a strict
mathematical sense, this non-linear effect is difficult to in-
clude but experimental observations can be made on the analog
computer simulation. If the basic relations obtained for a con-
stant parameter second order system are used in conjunction with
a saturation effect type non-linearity, some small range for the

model can be established.

3.2.1 Examples of Active Networks

3.2.1.1 Triode Amplifier
The transfer function for the triode amplifier equivalent cir-

cuit in Figure 3-1 is easily obtained from circuit equations.

From the input voltage divider
in

Labeling currents in the two loop mesh as “Il" flowing through

"rp" and "I:" flowing through RO we can easily write the matrix

relation
E = 2 I
or
Heg RL+r -Ry, ] [I ]
["e7] - R P C(Bq + Ry) +1 oy
SC

Where "S" is the Laplace operator.

17.



To obtain the currents we apply cramers rule

1 _ Leg(CRy + CR, + 1)
(2] - o [0 V)
eg RL
and
A = (CRLRO+Cpr0+CrpRL)S+RL+rp

sc
To obtain the output voltage
€ ° I2 RO
plus "eg" into 12 and obtain

CRyRp W Ry e,

e =
o (Rg + Ri) LC RLRO + C rpRO + C rpRL) S +

or simplified

o . “ By Cin

RL + rp]

e,
in
C R0

3.2.1.2 Pentode Amplifier

(Rg + Ri) L1+ rp/RL + rp/Ro) S + (RL +

r ) ]
Ry,

The transfer function for the pentode amplifier equivalent

circuit shown in Figure 3-2 can be obtained in two parts.

First the input filter can be set-up as a voltage divider

in terms of impedance as

Z

e = 2 e

g Zl + 22 in

where
+

2 - . 1 _ Rgcl S 1
1 g Cl S Cl S
g = 1 _ Ry

2 1/R, + C2 S 1l + R C2 S

18.



Hence
R, Cl S ein

2
C2) S + (Rg C, + Ry C

e =
g (Ri Rg Cy + Ry C2) s +1

1 1

Next, the output filter can be set up as a matrix

E = 2 1I
or
ve r +Z, +32 ~Zy, 1
Vo] = [ A % ) e
—ZL ZL+§E-6+RO 2
where
g = 1 _ Ry
1 ﬁl + CK S 1 + RK CK S
K
z = 1
L ﬁ% + C3 S 1l + RL C3 S

Applying Cramers rule to obtain "12"

1

I2 =KZLueg
where
= + + +
A fEfZl zL+[c0rP Z. CO;P Ry*Cq zlzL+cORO(zl+zL)]s
C., S
0 =
Since the output is
e = R, I, = EQ—EEJi—EE
o) 0 2 A
which can be expressed as
H e S
€ - 1 +g +Z,) S +Z.+Z
o (1 + r +2Z, r 1 + r 1124,
Ro 2y, CoRo%L

19.



With some algebra the impedance can be inserted and the

output written as
M e s (1+R,.C,S)

g K™K
e = 3 2
o) d3 ST + d2 ST + dl S + do
where
= C
d3 RK Krpc3
3
d2 = rpc3 + RKCK (EE + 1 + rp/RO + rp/RL)
dl =1+ r +RK + r +RK + RKCK (1 + rp/RL)
Rg Ry, CoRo
dO = C1R (1 + RK +r )
00 RL

Inserting the Grid voltage calculated already

M RiC
2

2
1 S (1 + RKCK S) €in

3 2
+d,8° +d; s+ d)

(dss + d4 s+1)(d3s

d5 = RiRgClCZ

d4 = RgCl + Ricl + RiC2

Hence the pentode amplifier transfer ratio is

e W R, Cy (1 +RyCys) s?
7 3

e.
in d5 ST + d4 S + l)(d3 S

+ d 82

5 + d, 8 + 4

1 0)
3.2.1.3 Transistor Amplifier

The transfer function for the equivalent circuit shown in

Figure 3=3 can be obtained in two parts. In this case, the

20.




in

1R Co
5 *BB |t .
I\ ~
C
N - ([ >
. \'“ e
Ry i L
- O
CO
i
)
vy
L
I'e :‘: .
l - ao
FIGURE 3-3
TRANSISTOR AUDIO AMPLIFIER AND EQUIVALENT CIRCUIT
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first part is merely a voltage divider and the second part

a current divider.

First, the input filter can be set-up as

2
v, = e
1 Zl + Z2 in
where
g - & 4 1 _ Rgcl S +1
1 g c, s C, s
1
Z2=RBB+R1+1—G.O +CeS
RBB Ri Te
or
7 = Te RBB Ri
2 (RBB + Ri) re + (1 - aO)RBB Ri + re RBB Ri Ce S
Hence, after simplifying
S e.
in
v, = 2
1l d2 sT + dl S + do
where
d2 = Ce g
Ce (R, + R.) ’ R
d, = — + BB i’ R_+ (1 -a,) g + 1
1 Cl R R g 0 r
BB "1 e
_ (RBB + Ri) (1 -«
9% = R_RC + 0
BB "i"1 reCl
Next the output current divider is
I——-—j— (G,OVl)
0 RL + ZO r,
where
e = LR = RiRyCq S (ag Vy)
o 00 re(RL+R0)COS+l)

22.




or in a simplified form

®% K s°
= - Z S + d
ein (d3 S + l)(d2 sS4 + dl O)
where
R RpCo %o
K = —(/——
e

d; = (R + Ry) €y

3.2.2 Initial Condition in a System

Initial conditions and constant source values, such as a
D-C bias, both enter a transfer function in a very similar
way as many text books prove. The question here is one of
measureability of this source value and where it appears
in the transfer characteristic. To observe these proper-

ties, consider the definition of a Laplace transform.

I f(t) exp (-st) dt

O

H(S)

I

where s Laplace transform operator

£(t) Time function of the source

Normally an initial value theorem is stated so that the
initial value depends upon a limiting process where "S"
approaches infinity. Then this transfer function can
only take on non-vanishing values if the exponential
term does not vanish. This can occur only for very small
values of t, and the result in the limit is the initial

condition.

23.



Consider a typical source in the general form

£(t) = Mt"
where
n = 0, 1, 2, esee 4
M = Scale factor
clearly
H(s) = Mn!
Sn+l

If £(t) is merely a bias contained in a voltage equation,
n = 0 and

Lim H(S) = Lim

e S —>o

Since S contains a real and imaginary part (S =a + j w)

this clearly shows that the real part of S is required
to go to infinity as well as the imaginary part. This is
required because the integral of an exponential along
only a vertical line would become an undefined quantity

(except in a special impulse sense).

This would not be clear if the theorem is written as follows:

+1
Lim s B(s) = [ﬁ—féﬂ] = (™))
at
S ——pn

From this discussion it is apparent that initial condi-

" tions appear normally as poles at the origin.

24.




The next concern is the measureability of these poles.
Since the growing exponential technique is based on a
transient responce. The non-transient, D-C or steady
values can not be measured by applying this technique.
However, the opposite question concerning the use of
growing exponentials in testing a system with a pole
at zero does arise., The normal approach in testing a
system with a D-C value is too block the D-C out of the
measuring circuit. This can be accomplished in an elec-
trical network with a capacitor in series with the out-
put to the measuring equipment. A typical transfer
characteristic for this blocking action is

C RO S

= — 9 = S
Hp(s) = C R, 5+1 S+ 1

Obviously the pole at the origin is removed and replaced

with a pole at

This complicates the mathematics in obtaining an esti-
mator for the growing exponential technique in that it
adds a pole to be considered in evaluation of residues.
However, the basic mathematics is in no way limited

since the presence of additional poles is not presently

considered a limiting factor.

One requirement inferred in a system in this discussion

is stability. In order to test with growing exponential

25.



signals, a basic requirement is that bounded or controlled
input signals produce controlled or bounded output signals.,
With this in mind, problems associated with stability and

initjial conditions must be assumed answered by another

neans,

3.3 REDUCING TRANSFER FUNCTIONS

All of the techniques study thus far depend upon a know-
ledge of the system transfer function, This may be diffi-
cult to obtain for complex physical systems, however, at
least three general methods are available. The first
method is where the system may obey a physical model
approximation very accurately within some specified dy-
namic range. In this instance, calculations based on
the model will result in a transfer function in which
parameters will be calculated or experimentally deter-
mined., The second method is a Bode frequency plot of
magnitude and phase for both input and output may be
obtained with an appropriate variable frequency sinu-
soidal generator. This will lead to an approximation

of the transfer function if appropriate phase and ampli-
tude characteristics are properly analyzed. The third
method is a transient test where a step or ramp tran-
sient input may be used and the transfer function again

approximated in the time domain.

The approximation of an actual function must always con-

tain some error. Control theory usually demands a simple

26.



transfer function, thus, the error is dictated by rela-
tive importance of particular poles and zeros. In the

case of a large number of poles and zeros, the dynamic

frequency range of the model will be restricted., Thus,
simplicity and/or reduction of poles and zeros must be

considered to emphasize specific dominant poles and

zZeros,

One way of evaluating important system characteristics

is to split the system transfer function up into its
important parts., The general area of control system
compensation has applied this concept in order to manip-
ulate poles and zeros around the complex plane with the
ob jective of achieving a particular time response. This
same scheme is applicable in measuring system performance
and it seems worthwhile at this point to investigate some

of the results,

A simple demonstration of splitting off important system
transfer function parts is easily seen if a difference
scheme is considered. For example, let the complete

transfer function consist of

GT(S) = Gl(s) G2(S)
Suppose the important factors are included in GZ(S)°
Then GT(s) - G3(S) = GZ(S)

and clearly

27.



The result indicates that an effective system transfer function
GZ(S) can be obtained by subtracting a more complex function away
from the total system function. This result seems trivial, but
compare this with the ordinary methods used when the system char-
acteristic is complicated. Pole and zero locations are observed
in the calculated transfer function and thrown out when appro-
priate, to simplify the transfer function with little regard for
the actual dynamic range. The measureability of parameters in-
cluded in the modified transfer function will not be the same

for these two cases,

Another means of reducing a complicated function is by cascade

or feedback compensation., This introduces the possibility of
poles and zeros entering the measurable transfer function because
of imperfect cancellation., However, it may offer the possibility
of a simplified function for reducing the system compared to the

simple difference scheme above.

The reduction process offers the possibility of investigating
higher order systems in terms of important parameters in lower
order systems, However, limitations will exist if the linearity
of a system function is in question. The position of the trans-
fer function in the algebra used, requires a commutative property

exhibited only for linear time invariant systems.

28.



3.4 LAGUERRE FUNCTION SET

The growing exponential signals are matched to partial deriva-
tives with respect to particular parameters. Consequently,

some approximation of the partial derivative system is required.
This approximation problem can be difficult and it seems worth-
while to examine the properties of the functions used. For ex-
ample, when many parameters are related to the same characteris-
tic frequency, the approximating function can involve the Laguerre
set of orthonormal functions. This set has all of the properties'
of a finite dimensional coordinate system. That is, any partic-
ular function can be expressed in terms of a sum of a finite
number of terms. The form of each term is a constant multiplied
by one of the members of the Laguerre set., Since each member

of the Laguerre set is orthogonal to all others over the interval
t = 0 to infinity, and the sum contains only "N" terms, the set
clearly exhibits all of the normal properties of a finite dimen-
sional coordinate system. Two properties that this Laguerre set
exhibits are worth noting. First each member is contained in

all higher order members, for example L2 contains Ll and L,. The

0
second property is the exponential multiplier times a
specific polynomial in the time parameter, This is exactly

suited to approximating linear system impulse response functions

for causal systems.

The following six functions represent the first six Laguerre
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1
L,
Ly
L4
Lg
and the
L
n
where
p
n
The six
half or
3-4, A

= W2p (2pt - 1)  exp(PY)

2

JZp (2p2t - 4pt + 1) exp(—pt)

V2p (4/3 p3t3 - 6p?t? + ept - 1) exp(Pt)

= JZP (2/3 p4t4

3 2.2

- 16/3 p3t + 12p“t® - 8pt + 1) exp(—pt)

= J2p (4/15 pt3 - 10/3 pt? + 40/3 p3t3 - 20p%t?

+ 10pt - 1) exp(_pt)

general term is

- 2 | (2pt)" _ n(2pt)™' | n(n-1) (2pt)"?
nl (n-1)1 21 (n-2)1

n(n-1) (n-2) (2pt)"~3

0t (DR ] (ept)
3! (n-3)!

the pole location or one over the time constant

= time

0, 11213:""—-IN

functions are calculated for a pole location of one
a time constant of two seconds and are shown in Figure

short digital program was written so that values of all

30.
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six of these functions could easily be obtained for use as
initial conditions in the specialized growing exponential
generator. All that is required for program use is the parti-
cular pole location. Any specified time can be evaluated or
the points representing the entire function when particularly

low values are desired.

3.5 SECOND-ORDER SYSTEM - DENOMINATOR PARAMETERS

The transfer function is the same as that on page 41 of the

Phase A report, namely,

Cls + cO . S + 5
s2 + ;s + 4, s2 + 25 +10 ¢

H(s) =

which is also written

c;s + C

1 0

H(s) =
(s + a)z + B

2

The partial derivatives of H(S), giving the component partial

systems corresponding to 4, and dl' are

0

SH _ -s N —S(ClS + C0

2d; - 2 H(S) = p Tz
1 ST + dls + d0 [(S + a)z + 82}

SH  _ -1 - =(eys + ¢y)

3d. - 3 H(s) = 2
1 S + dls + do [(s + a)2 + 82]
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A

The probing signals are the same as on page 42 of the Phase A

report, namely,

J—— (—s-+Ja2 + 82)
= 20

$_(s
1 ) (-s +-a)2 + B2
and
J—— (-s AJaz + 82) [(-s 41)2 + 32]
¢, = V&  ENPVAY.
[(-S +a)” +8 ]

The matrix components for the partial systems are found by
integrating as in the Phase A report, but the work involved
is much greater because of the greater complexity of the

integrands., As an example, the matrix component (hll)d is
1

found from

AN
1 Jza (s+ Jaz + s%) fs(cls * Co \\

(hy;)q

Jg; (-s + Jaz + 82

das
[(-s + a)z + 82]
_ u I (82— az- 52) (cls + co) (s) das
21 j

¢ [(S + a)z + 82]3 [(S - a)z + 82]

Evaluation of this integral is extremely tedious and affords

numerous opportunities for making errors, This necessitates

33.
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a long procedure of solution and correction cycles in order

to obtain a general solution. The final results are

- l:2 “1*32)(1 5). 212 >
16 o a + 8 320 (0."+8°)
Hqp = -
C a2 2“Ja2 + 82 2
1 > > - Cla -
a~ + B
1
OI ("' 2 (Cl + COG: )
N 16 a OL2 +82 ]
and
. [ a2_ 82 ~
— c,a + C 2 2 ]
40L2((12 +82) 1 o o+ B .
Hdo =
— 2
- 04
1 [Cl 24 82 _ 2co ]
80Lz((12+ 82) N B2
2 2
-1 [ a® - B )]
—_— c.a + C —_—
0, 4a2(a2+ 82) 1 o(OL +82

The coefficients of @l(s) and @2(5) are chosen to be cos | and
sin ¥ from constant energy consideration as in the Phase A

report and the parameter modulation matrix is formed as

34.



Moo= ["dl Mdo]

- cos |
where Mg, = [Hdl] [sin M
_ cos
and Mo © [Hdo] [sin )

The numerical results for d1 = 2 and do = 10, which make

@ =1 and B = 3, are
-0.009124
M =
-0.005405
and
M1 =

which is normalized to

1.644

normalized M1 =

0.5924

-0.01875

0.015

-78.71

38.30

2.055

The testing is carried out with an analog computer, using

the same arrangement as when testing the numerator parameters

of the second order system (see the Phase A report) except

1

that the estimator is changed to reflect the new M ~. See

Figure 3-5. The probing signal is shown in Figure 3-6.
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Figure 3-6

Input Probing Signal

3.5.1 EXPERIMENTATION

The system was tested first with variations of 4, and do of

1l
2, 4, 6, 8, 10, 20 and 30% under otherwise nominal conditions.
vVariations in do were readily measured up to 10% from nominal,
but there was considerable influence by dj variations on the
estimator channel which should measure dl variations, so that
the latter could not be measured by themselwves, However, by
plotting dl versus do on a set of contours of constant dl

and do variations of both parameters can be measured., Alter-
natively, when limits have been set on dO and dl’ contours

such as those in Figure 3-12 can be used to decide whether

or not the system is acceptable,

Although linearity of measurements became poorer as the varia-
tions approached 30%, as seen in Figure 3-8 and 3-10. Never-
theless, Figure 3-14 indicates that the linearity was re-
markably good up to at least ten percent. Deteriorating
linearity can probably be attributed to the inaccuracy in-

curred by not using the higher order terms in the Taylor

37.




FIGURE 3-7 Ado FREQUENCY VARIATTONS
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WITH NO VARIATION IN dl
(LARGE VARIATIONS)

FIGURE 3-8 Ado FREQUENCY VARIAT IONS
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DAMP ING VARIATIONS

1
WITH NO VARIAT IONS IN do
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Series expansion into partial systems (reference Phase A re-

port, page 12).

It was found that the isolation of do measurements could be
optimized by slight adjustment of the estimator, so that

the estimator used in the tests became

1.644 2.055

0.7954 -1

3.5.2 NON-LINEAR DAMP ING

The gain of the feedback element controlling damping (P16 in
Figure 3-5).was varied non-linearly as in Figure 3-13. Mea-
surements were made with a linear range of 18 and 36 volts.
The results are shown in Figures 3-15 and 3-16. Plots com-
paring the measurements of parameter variations are shown

in Figure 3-14. The effect of the damping non-linearity was
to offset the measurements by an approximate value without
appreciably affecting the slopes of the plots of estimated

versus actual variations of the parameters.

|
l‘__ 36 v )
! Figure 3-13

Non-Linear Deadband

44,

On Damping Coefficient
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FIGURE 3-16 Ad, DAMPING VARIATIONS
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The isolation of the measurement of dO variations from d1
variations was somewhat deteriorated by inclusion of the
non-linearity, as can be seen in Figure 3-16, where there

is some variation of the do measurement from an initial
offset value. (As mentioned earlier the measurement of dl
could not be isolated from do variations, even with a linear

system).

3.5.3 NOISE TESTS

Noise was added to the probing signal and the plots of Figures
3-17 and 3-18 resulted. Note that signal-to-noise ratios

less than 26 db result in highly uncertain measurements. The
noise was inserted into both the nominal system and the tested
system from independent generators. Because of equipment
limitations, it was necessary to make all the system time
constants ten times shorter so that the noise bandwidth would
encompass the signal frequencies., This, of course, was only

a change in the time base so that the results are entirely
compatible with all others in this report. The signal-to-

noise ratio was measured by the ratio

peak rms voltage of the signal

average rms noise voltage
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SECTION 4

SYSTEM CONFIDENCE SAMPLING

4.1 SUMMARY

A method of measuring the confidence of a transfer Ifunction
has been established. The method gives value to and com-
pares all the parameters of the transfer function that are
unchanged iI the value orf one sample taken at a particular
time is unchanged. The procedure requires relatively small
amounts orf equipment, when compared to the growing exponen-
tial method, and is easily adapted to any transfer function.
The time Tfor measurement is approximately 5 times the time
constants of the circuit (i.e.,, the same as the growing ex-
ponential method). The method can not, however, synthesize
what parameter is bad without providing a series of inde-
pendent probing signals to establisnh what parameter has

changed.

4.2 INTRODUCTION

In the Phase A report of this study, a limited introduction
to the concepts of optimization were discussed. In this
discussion it was pointed out that the testing of system
perfiormance by rfeedback control has a potential possibility
of providing rapid test of operation with relatively small
amounts of equipment, when compared to the method of growing

exponentials. Because of this potential savings in equipment,

S1.



the procedure was investigated rurther.

In the growing exponential theory, the impulse response ol
the partial system convoluted with the input signal gives

the rfunctional
; _ T . - _
nji(T) =] nj(t) £, (T t) at

(Note: This is Egq. 3-27, Phase A Report
SIMAR 59/2)

where hj(t) is the weighting function of a filter and fi(t)

is the i-th input signal.

Letting 7 = 0 the equation gives the value of a sample orf
the output signal at t = 0 thus, obtaing
f + @
h, = h.,(t) £.(t) 4at.
By J J( ) £,(¢)

-~ ©

Let us propose a question. What would happen if the impulse
response of the desired system reversed in time was con-
voluted with the weighting function (impulse response) of
the actual system being tested? If the results are sampled
at time v = 0, then the value of the ?ampe will be

j e 2204y at
- @ 1

if the parameters of the system are unchanged.

If the system has changed parameters, then the value of the
sample will be different. The only exception will occur

if both the shape and the size of the weighting function

52.



change in proper amounts to nullify the changes.

Now suppose a signal is applied and forced to be orthogonal
to the impulse response of the desired system over negative
time. The results oI this resultant convolution integral
sampled at 7 = 0 will be essentially zero. If the system
has changed parameters, the sample may not be zero. The
one condition which would allow the sample to equal zero
would be a change in gain in the measured system, with no
change in shape of the weighting function. Therefore, a
test that could be performed on a system is to provide

as a signal the negativé time impulse response to the sys-
tem and measure the change in the response of the system

at a predetermined time. This would allow specification orf
of a Go-No Go system test which would give an indication

that all of the parameter are within some limits,

4.3 NEGATIVE TIME IMPULSE RESPONSE

The negative time response of a network can be obtained
from the inverse Laplace transform of the transfer func-

tion by replacing the operator (s) by (-s).

£(t) = 17t [H(-s)]

The generation of this function can be put into a general-
ized form for any transfer function. This generalized
form was discovered by the investigation of optimum rfeed-

back control. While the derivation is complicated, the
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results are intutive. Any transfer function can be repre-

sented by the following diagram as reported in the Phase I

report,
/. ‘—9ql(?)
r———— —
]
. |
N- |
- |
x, (t) |
t .~ r P | r
— Jdt ' ==~
— Jdt | Jdt x. (t)
N
1 o !
| Xl“’ Xa(t)
!
| | |
, (a1
L — AjET:ﬁ/__ |
AN
Figure 4-1
Analog Computer Simulation of Any
Transfer Function
To generate the impulse response function reversed in time
refer to the diagram in Figure 4-2
The only difference in the two diagrams is that the signs
of the coefficient terms alternate. For example, if the
transfer function is
c,s + cC
H(s) = 1 o
2
s” +d;s + g
1 o
54.



-’ql(t)

r———-
l
|
N- =1
. |
x, (t) ' |
v f r ! J
i dt Jat I dt x (t)
| Xl(t) x;(t)
| () ,
| N2 .
b - - = _ « |
-d
o
Figqure 4-2
Analog Computer Simulation of Any
Impulse Generation
then ~c,8 + ¢
H(-s) = Q
2

s” - dl(s) + do

Thus, giving alternating signs in the diagram. The results
say that the negative time impulse function for any trans-
Ter function can be generated simply, and with very little

equipment. If the transfer function is of the forms
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Jres

then simple positive feedback generates the negative time

impulse response rfunction,

These signals then can be fed into the system under test,
and a sample taken at time 1 = 0., If a signal independent
to the impulse function is desired, the input to the rfirst

integrators in the diagram can be used as an input signal,

i.e., X (t).
X (8) =+ dg; X, (%) - g 5 X () + ...l - d) Xlt)

This signal will be independent of the imulse response

q(t), where: q(t) = -cg ¢ X, (£) + o 5 X (t) - .... e X;(t),
and if supplied to the system under test would give another
independent check of whether the system's parameter were

bad or good when sampled at a particular time, 7 = 0. 1In
some particular cases, a signal orthogonal to the impulse
function over negative time may be supplied to the system

to be tested. These particular cases are; when there is
only one term in the numerator of the transfer function.

For example,

etc.
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In these cases the output of any integrator in the diagram
will supply an orthogonal signal to the impulse function

overall negative time.

To test which parameter has changed several independent,
signals would have to be provided each designed to measure
one or more parameters. The testing time for this procedure
would approach sinusoidal testing. These independent sig-
nals could be obtained by setting various sets of coeffi-
cients cy to zero. An experimental program could estab-
lish the measuring sensitivities of the particular para-
meters with respect to the coefficient cye. Thus, a
particular set of probing functions could possibly be

found which would measure a set of parameters. This method
is not recommended for parameter measurement since the
growing exponential method performs the measurement of

several parameters with one probing signals.

The main importances and uses of the method discussed here

are:

a. Confidence checking of the system parameters,
b. Equipment requirements are less than the growing expo-
nential method.

c. This test saves time in measuring for coniidence checking.
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Where are we going? The Phase C erffort will be pointed in
the direction of a simulated system with a linear system
transrfer function associated with a Saturn Subsystem. The
objective will aim at answering the pertinent questions
posed above., Other established applicable techniques and
questions will be extended within the time and money avail-

able.
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SECTION 5

CONCLUSIONS AND RECOMMENDATIONS

It has been demonstrated that linear active networks can
be interpreted as linear system transfer functions with

limited input signal amplitudes.

Experimental results clearly demonstrate the ability to
measure variations in coefficients of general first and

second order transfer functions.

Non-linear properties in coefficients of active networks
may be ignored if the signal amplitude can be limited to

the linear region.

Simultaneous variations in many parameters may require
longer testing routines to establish the values of each

parameter variation.

Noisy signal degradation in the measuring process is
independent of the complexity of the system under in-
vestigation. This is illustrated by the 26 db S/N

for first and second order systems.

Absolute measurement accuracy is a function of system

complexity, as illustrated by the contour in Figure 3-12.

Complicated transfer functions can be reduced by a

difference technique or a compensation technique.

RECOMMENDATIONS

The technique of utilizing growing exponential input probing

signals must be evaluated on a real system and compared on a

competitive basis with existing checkout methods.
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